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The flow of a viscous incompressible fluid in a circular tube generated by a sudden
impulse on the axis is studied on the basis of the linearized Navier–Stokes equations.
A no-slip boundary condition is assumed to hold on the wall of the tube. At short
time the flow is irrotational and may be described by a potential which varies with
the square root of time. At later times there is a sequence of moving and decaying
vortex rings. At long times the flow velocity decays with an algebraic long-time tail.
The impulse generates a time-dependent pressure difference between the ends of the
tube.

1. Introduction
The nature of flow of a fluid in a circular tube is of great interest in science

and technology. The steady state Poiseuille flow caused by a pressure gradient is
given by a simple solution of the nonlinear Navier–Stokes equations, with a well-
known parabolic flow pattern (Happel & Brenner 1973). Another type of flow is
caused by the motion of a particle suspended in the fluid. Since the flow acts back
on the particle, for given applied force its motion is profoundly influenced by the
presence of the wall. For constant force and low Reynolds number the motion may
be calculated from the steady-state Stokes equations. The Green function solution of
these equations, corresponding to the motion of a particle of radius much smaller
than the radius of the tube, and for no-slip boundary condition at the wall of the
tube, was first obtained by Hasimoto (1976) and by Liron & Shahar (1978). The
solution shows a quite complicated flow pattern, consisting of an infinite sequence of
eddies of amplitude decreasing exponentially with distance from the source point. It
also shows a pressure rise between the two ends of the tube. In combination with
Poiseuille flow the pressure rise is interpreted as an additional pressure drop (Brenner
1970; Pozrikidis 2005).

In the present article we study the dynamics of flow in a tube, generated by a moving
particle suddenly set in motion. It is of interest to see how eddies develop in time,
starting from irrotational flow at short time. The analysis is based on the solution of
the linearized Navier–Stokes equations for a sudden impulse applied at a point on
the axis and directed along the axis. The fluid is assumed to be incompressible. The
explicit form of the corresponding Green function is found as a Fourier integral over
wavenumber and frequency. At any time the flow velocity decays exponentially with
distance along the axis, but at any fixed point it decays in time with an algebraic
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t−5/2 long-time tail. The time integral of the Green function is identical with the
steady-state Green function studied by Hasimoto (1976) and Liron & Shahar (1978).

The pressure disturbance diverges at short time, as in the case of a plane wall
(Felderhof 2009). The pressure rise between the ends decays to zero in the course of
time. The velocity autocorrelation function of a Brownian particle centred initially
on the axis decays with a negative t−5/2 long-time tail at long times, the negative sign
apparently being due to the adverse pressure gradient.

An attempt to calculate the time-dependent Green function was made earlier by
Smith (1994), but there is an error in his equation (3.6). He claimed that at long
distance along the tube the flow velocity tends to a non-vanishing profile at any time,
in conflict with the behaviour found here.

2. Linear hydrodynamics of flow in a circular tube
We consider a viscous incompressible fluid of shear viscosity η and mass density ρ

located in a circular tube of radius b. We choose coordinates such that the z-axis is
along the axis of the tube. For time t < 0 the fluid is at rest at static pressure ps . At
time t = 0 an impulse P is imparted to the fluid at the origin and directed along the
z-axis. We study the resulting motion of the fluid for time t > 0.

For small-amplitude motion the flow velocity v(r, t) and the pressure p(r, t) are
governed by the linearized Navier–Stokes equations

ρ
∂v

∂t
= η∇2v − ∇p + Pδ(r)δ(t), ∇ · v = 0, (2.1)

with impulse P = P ez. The pressure p(r, t) is determined by the condition of
incompressibility. We assume that the flow velocity satisfies the no-slip boundary
condition at the wall of the cylinder, i.e. v = 0 at R = b.

We look for the solution of (2.1) for which the flow velocity v(r, t) vanishes as
z → ±∞ at any time t . The condition of incompressibility and Gauss’ theorem imply
that for this solution ∫

z=z0

vz(r, t) dS = 0, (2.2)

where the integral is over the cross-section of the tube at z = z0, for any point z0.
Hence the impulse causes no net transport of fluid. The momentum P is transferred
to the wall of the cylinder.

After Fourier analysis in time we find that the equations for the Fourier components

vω(r) =

∫ ∞

0

eiωtv(r, t) dt, pω(r) =

∫ ∞

0

eiωt [p(r, t) − ps] dt (2.3)

are

η(∇2vω − α2vω) − ∇pω = −Pδ(r), ∇ · vω = 0, (2.4)

where we have used the abbreviation

α = (−iωρ/η)1/2, �α > 0. (2.5)

We use cylindrical coordinates (R, ϕ, z). On account of axial symmetry the flow
may be derived from a Stokes stream function (Acheson 1990) according to

v(r, t) = ∇ ×
(

Ψ (R, z, t)

R
eϕ

)
. (2.6)
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The two non-vanishing components of the flow velocity are given by

vR(r, t) = − 1

R

∂Ψ (R, z, t)

∂z
, vz(r, t) =

1

R

∂Ψ (R, z, t)

∂R
. (2.7)

We express the stream function as

Ψ (R, z, t) = Ψ0(R, z, t) + Ψ1(R, z, t), (2.8)

where Ψ0(R, z, t) is the stream function for infinite space, and Ψ1(R, z, t) is the
correction necessary to satisfy the no-slip boundary condition at the wall of the
cylinder. The stream function for infinite space is given by (Smith 1994; Felderhof
2008)

Ψ0(R, z, t) =
P

4πη
χ(r, t)

R2

r2
(2.9)

with r =
√

R2 + z2 and with radial function

χ(r, t) =
ν

r
erf

(
r√
4νt

)
−

√
ν

πt
exp

(
− r2

4νt

)
, (2.10)

where ν = η/ρ is the kinematic viscosity. The corresponding Fourier transform is

Ψ0ω(R, z) =
P

4πη

[
1 − e−αr

α2r
− e−αr

α

]
R2

r2
. (2.11)

We calculate the correction term Ψ1(R, z, t) from a Fourier transform with respect to
time and in addition put

Ψ1ω(R, z) =
P

2π2η

∫ ∞

0

ψ1(R, k, ω) cos kz dk. (2.12)

In order to apply the boundary condition at R = b we must cast the function Ψ0ω(R, z)
in the same form. Thus we write

Ψ0ω(R, z) =
P

2π2η

∫ ∞

0

ψ0(R, k, ω) cos kz dk, (2.13)

with the function

ψ0(R, k, ω) =
1

α2
[kRK1(kR) − sRK1(sR)], (2.14)

with modified Bessel function K1(x) and the abbreviation

s =
√

k2 + α2. (2.15)

For r > 0 the stream function must satisfy the equation

E2(E2Ψω) − α2E2Ψω = 0, (2.16)

where the linear operator E2 is defined by

E2f = ∇2f − 2

R

∂f

∂R
. (2.17)

It is easily checked that (2.16) is satisfied by the function Ψ0ω(R, z) in (2.11). In order
to satisfy the equation for Ψ1ω(R, z) we put

ψ1(R, k, ω) = A(k, ω)RI1(kR) + B(k, ω)RI1(sR). (2.18)
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The no-slip boundary condition at R = b is satisfied provided the total stream
function Ψω = Ψ0ω + Ψ1ω and its derivative with respect to R vanish at R = b. Hence
we find for the coefficients A(k, ω) and B(k, ω) :

A(k, ω) =
P (k, ω)

Z(k, ω)
, B(k, ω) =

Q(k, ω)

Z(k, ω)
, (2.19)

with denominator

Z(k, ω) = α2b[sI0(sb)I1(kb) − kI0(kb)I1(sb)] (2.20)

and numerators

P (k, ω) = s − k2bK0(kb)I1(sb) − ksbI0(sb)K1(kb),
Q(k, ω) = k − s2bK0(sb)I1(kb) − ksbI0(kb)K1(sb).

}
(2.21)

The two non-vanishing components of the velocity field v0ω(r) are

v0Rω(r) = − 1

R

∂Ψ0ω(R, z)

∂z
=

P

4πη

Rz

α2r5
[3 − (3 + αr + α2r2)e−αr ],

v0zω(r) =
1

R

∂Ψ0ω(R, z)

∂R
=

P

4πη

[
2

α2r3

(
1 − 3R2

2r2

)
[1 − (1 + αr)e−αr ] + e−αr R2

r3

]
.

⎫⎪⎪⎬
⎪⎪⎭
(2.22)

The corresponding components of the velocity field v1ω(r) are

v1Rω(r) =
P

2π2η

∫ ∞

0

[A(k, ω)I1(kR) + B(k, ω)I1(sR)]k sin kz dk,

v1zω(r) =
P

2π2η

∫ ∞

0

[A(k, ω)kI0(kR) + B(k, ω)sI0(sR)] cos kz dk.

⎫⎪⎪⎬
⎪⎪⎭

(2.23)

We note that with P = 1 the sums of the expressions in (2.22) and (2.23) represent
the elements GRz(r, r0, ω) and Gzz(r, r0, ω) of the Green function tensor for source
point r0 at the origin.

The pressure corresponding to the point excitation in infinite space has the dipolar
form

p0(r, t) =
1

4π

r̂ · P
r2

δ(t). (2.24)

This corresponds to the Fourier transform

p0ω(r) =
1

4π

r̂ · P
r2

, (2.25)

independent of frequency. The long-range pressure field is established instantaneously,
because the fluid is incompressible. The wall of the cylinder creates a pressure field
p1(r, t), which persists for t > 0. It satisfies Laplace’s equation at any time t . From
the z component of (2.4) and from (2.23) we find for its Fourier transform

p1ω(r) =
iωP

2π2ν

∫ ∞

0

A(k, ω)I0(kR) sin kz dk. (2.26)

The coefficient A(k, ω) diverges as 1/ω at low frequency, so that p1ω(r) does not
vanish in the steady state limit. It is known from the work of Liron and Shahar
(1978) and of Blake (1979) on the steady state problem that it has an interesting
profile.
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3. Steady-state limit
It is worthwhile to consider separately the steady state limit of the above expressions,

corresponding to zero frequency. The calculation yields the Green function for the
steady state Stokes equations for source point at the origin and no-slip boundary
condition at the wall of the cylinder. The Green function for arbitrary source point
has been obtained earlier directly from the Stokes equations (Hasimoto 1976; Liron &
Shahar 1978).

We consider first the Green function for infinite space. From (2.14) we find at zero
frequency

ψ0(R, k, 0) =
1

2
R2K0(kR). (3.1)

Inserting this into (2.13) we find for the steady state stream function

Ψ00(R, z) = P
R2

8πηr
, (3.2)

in agreement with Oseen’s tensor. The corresponding pressure is found from (2.25).
It is less straightforward to take the zero frequency limit in (2.18). Both coefficients

P (k, ω) and Q(k, ω) vanish at zero frequency, and the terms linear in ω have opposite
sign. The coefficients must be expanded to order ω2. The function Z(k, ω) in (2.20) is
proportional to ω2 at small frequency. In addition we must take account of the term
linear in ω in the expansion of the Bessel-function I1(sR) in (2.18). Altogether we find

ψ1(R, k, 0) = A1(k)bRI1(kR) + A2(k)R2I2(kR), (3.3)

with coefficients

A1(k) =
P1(kb)

M(kb)
, A2(k) =

P2(kb)

M(kb)
, (3.4)

where the numerators are

P1(x) = xI1(x)K0(x) + I2(x)[xK1(x) − 2K0(x)],
P2(x) = −x[I2(x)K0(x) + I1(x)K1(x)],

}
(3.5)

and the denominator is given by

M(x) = 2x[I0(x)I2(x) − I1(x)2]. (3.6)

The function D0(x) of Liron and Shahar (1978) is given by

D0(x) = I1(x)M(x). (3.7)

We note that

M(iy) = 2i[y(J0(y)2 + J1(y)2) − 2J0(y)J1(y)], (3.8)

which shows the relation to Blake’s expression (7e) (Blake 1979).
It can be shown that the sum function

ψ(R, k, 0) = ψ0(R, k, 0) + ψ1(R, k, 0) (3.9)

is even in k. Hence for the sum the integral analogous to (2.12) at ω = 0 may be
expressed as

Ψ0(R, z) =
P

4π2η

∫ ∞

−∞
ψ(R, k, 0)eik|z| dk, (3.10)

and the integral may be performed by contour integration. The function M(x) in (3.6)
has zeros in the upper half of the complex x plane, occurring in conjugate pairs with
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Figure 1. Streamlines of the steady-state flow pattern (vR0(R, z), vz0(R, z))
showing the first vortex ring.

respect to the imaginary axis. This leads to the alternative expression

Ψ0(R, z) = �
∞∑

n=1

Fn(R)eixn|z|/b, (3.11)

where the sum is over the zeros {xn} of M(x) excluding x0 = 0, and the function Fn(R)
is determined by the residue corresponding to xn. Numerical values of the zeros have
been listed by Friedmann, Gillis & Liron (1968). We have found that the integral
form of (2.12) with amplitude ψ1(R, k, 0) as given by (3.3) is convenient in numerical
evaluation.

The components of the steady state velocity field v10(r) are

v1R0(r) =
P

2π2η

∫ ∞

0

[A1(k)bI1(kR) + A2(k)RI2(kR)]k sin kz dk,

v1z0(r) =
P

2π2η

∫ ∞

0

[A1(k)bI0(kR) + A2(k)RI1(kR)]k cos kz dk.

⎫⎪⎪⎬
⎪⎪⎭

(3.12)

From the z component of (2.4) and from (3.12) we find for the steady state pressure

p10(r) =
P

π2

∫ ∞

0

A2(k)I0(kR)k sin kz dk. (3.13)

For any value of R < b the integral tends to the value π/b2 for large positive z, and to
−π/b2 for large negative z corresponding to the behaviour A2(k) = 2/(k2b2)+O(log k)
for k → 0.

It follows from the expression (3.11) for the steady-state stream function that the
steady-state flow pattern shows an infinite sequence of vortex rings. In figure 1 we show
the first vortex ring of the steady-state flow in the range 1.5b < z < 3b, 0 < R < b.
On the axis the steady-state velocity vz0(0, z) reverses sign at z0 = 2.14b. In figure 2 we
plot the velocity component vz0(0, z) in the interval 2b < z < 4b. In the numerical work
we use units such that b = 1, ρ = 1, and η = 1, and choose P = 4πη. The negative
velocity has been interpreted as an attractive hydrodynamic pair interaction (Cui,
Diamant & Lin 2002). However, the effect is very weak and probably undetectable.
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Figure 2. Plot of the steady-state velocity component 105vz0(0, z) on the axis in the interval
2b < z < 4b. In all figures the units are such that b = 1, η = 1, ρ = 1 and P = 4π.

4. Potential flow
Immediately after the impulse the flow is irrotational and equal to the gradient of

a scalar potential satisfying Laplace’s equation. We can find the potential φ(r) by
considering the high-frequency behaviour of the Stokes stream function. For infinite
space we see from (2.11) that the stream function behaves as

Ψ0ω(R, z) ≈ P

4πη

R2

α2r3
, as α → ∞. (4.1)

This corresponds to the dipolar potential

φ0(r) =
1

4πρ

r̂ · P
r2

, (4.2)

and the short-time behaviour

v0(r, t) ≈ −∇φ0(r) =
1

4πρ

−1 + 3r̂ r̂
r3

· P, as t → 0 + . (4.3)

We derive a similar expression for the correction term v1(r, 0+).
At high frequency the coefficient A(k, ω) in (2.19) behaves as

A(k, ω) = − kK1(kb)

α2I1(kb)
+ O

(
1

α3

)
, as α → ∞. (4.4)

The coefficient B(k, ω) tends to zero exponentially fast. Hence the asymptotic
behaviour of the stream function is, from (2.12),

Ψ1ω(R, z) ≈ P

2π2iωρ

∫ ∞

0

kK1(kb)

I1(kb)
RI1(kR) cos kz dk, (4.5)

corresponding to potential

φ1(R, z) =
P

2π2ρ

∫ ∞

0

kK1(kb)

I1(kb)
I0(kR) sin kz dk. (4.6)

The dipolar potential for infinite space may be expressed alternatively as

φ0(R, z) =
P

2π2ρ

∫ ∞

0

kK0(kR) sin kz dk. (4.7)
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Hence it is evident that the radial derivative ∂φ/∂R of the sum

φ(R, z) = φ0(R, z) + φ1(R, z) (4.8)

vanishes at R = b, so that at the wall the short-time flow velocity is parallel to the
wall. The behaviour at the boundary of the irrotational flow corresponds to perfect
slip. For R < b the integral in (4.6) tends to the value π/b2 for large positive z, and to
−π/b2 for large negative z corresponding to the behaviour (K1(kb)/I1(kb))I0(kR) =
2/(k2b2) + O(log k) for k → 0.

The initial value of the flow velocity is

v(r, 0+) = −∇φ(R, z). (4.9)

The radial component of the velocity is given by the integral

vR(R, z, 0+) =
P

2π2ρ

∫ ∞

0

[
K1(kR) − K1(kb)

I1(kb)
I1(kR)

]
sin kz k2 dk, (4.10)

and the axial component by

vz(R, z, 0+) =
−P

2π2ρ

∫ ∞

0

[
K0(kR) +

K1(kb)

I1(kb)
I0(kR)

]
cos kz k2 dk. (4.11)

For large values of |z| these expressions are not convenient in numerical calculation.
Instead by a change of contour in the plane of complex wavenumber we find the
alternative expression for the radial component

vR(R, z, 0+) =
P

2π2ρ
	1 + i√

2

∫ ∞

0

[
K1(kR) − K1(kb)

I1(kb)
I1(kR)

]
eikz k2 dξ, (4.12)

with the change of variable

k =
1 + i√

2
ξ. (4.13)

Similarly, the axial component is given by

vz(R, z, 0+) =
−P

2π2ρ
�1 + i√

2

∫ ∞

0

[
K0(kR) +

K1(kb)

I1(kb)
I0(kR)

]
eikz k2 dξ. (4.14)

If we expand the coefficient A(k, ω) in inverse powers of α to order 1/α3, we find
instead of (4.4)

A(k, ω) = − kK1(kb)

α2I1(kb)
− k

α3bI1(kb)2
+ O

(
1

α4

)
, as α → +∞. (4.15)

The second term yields a potential flow varying as the square root of time. We write
the flow velocity corresponding to this term as v′(r, t) = −∇φ′(r, t) with potential

φ′
1(R, z, t) =

P

2π2ρ

√
4νt

πb2

∫ ∞

0

k

I1(kb)2
I0(kR) sin kz dk. (4.16)

For R < b, the integral tends to the value 2π/b2 for large positive z, and to −2π/b2 for
large negative z corresponding to the behaviour I0(kR)/I1(kb)2 = 4/(k2b2) + O(1) as
k → 0. The time derivative of this potential corresponds to a pressure which diverges
as 1/

√
t at short time.
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Figure 3. Plot of the factor (P/2π2b3)P ′
1(0.6b, z) in (5.4) as a function of z (short dashes),

compared with the potential φ1(0.6b, z), as given by (4.6), (long dashes) and with the
steady-state pressure p10(0.6b, z), as given by (3.13) (solid curve).

5. Pressure
The pressure may be expressed as

p(r, t) = ps + ρφ(R, z)δ(t) + δp(r, t), (5.1)

where the time dependence in the last term may be calculated from (2.26). The delta-
function contribution may be regarded as the incompressible limit of the effect of
sound waves. By use of the expansion (4.15) in (2.26) we see that at high frequency
the Fourier transform of the pressure behaves as

p1ω(r) ≈ ρφ1(R, z) +
P

2π2b3α
P ′

1(R, z), as ω → ∞, (5.2)

with amplitude

P ′
1(R, z) = b2

∫ ∞

0

k

I1(kb)2
I0(kR) sin kz dk. (5.3)

The second term in (5.2) corresponds to a pressure surge diverging as 1/
√

t at short
time,

p′
1(R, z, t) =

P

2π2b2

√
ν

πb2t
P ′

1(R, z). (5.4)

In figure 3 we plot the behaviour of the factor (P/2π2b3)P ′
1(R, z) for R = 0.6b as a

function of z. It follows from the remark following (4.16) that the factor tends to 4 at
large positive z. The pressure contribution in (5.2) is related to the potential in (4.16)
by

p′
1(R, z, t) = ρ

∂φ′
1(R, z, t)

∂t
. (5.5)

In figure 3 we also plot the behaviour of the potential φ1(0.6b, z), as given by (4.6),
as well as the behaviour of the time-integrated pressure disturbance p10(0.6b, z), as
given by (3.13). One can understand the initial rise of pressure with increasing z by
considering a long tube of length 2L with L � b, which is closed at the ends. The
fluid is pressed against the wall at z = L by the force exerted at z = 0, and this causes
a rise of pressure, which decays in the course of time. At any time the pressure tends
to a constant at large positive z, but the constant rapidly decays to the static value
ps as time goes on.
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The behaviour of the pressure as a function of time follows by inverse Fourier
transform of the expression in (2.26). The transform may be expressed as

p1ω(r) = ρφ1(R, z) + (p10(R, z) − ρφ1(R, z))Gp(R, z, α), (5.6)

with the property

Gp(R, z, 0) = 1. (5.7)

Evaluation of the inverse Fourier transform requires numerical integration over
frequency and wavenumber. The calculation is time consuming, and it is worthwhile
to look for an alternative procedure. We use the method of Padé approximants,
which has the advantage of providing more insight in the analytic structure. The
high-frequency behaviour given by (5.2) suggests that the function Gp(R, z, α) is a
meromorphic function of α and can be expressed as

Gp(R, z, α) =
∑

j

Aj (R, z)

α − qj (R, z)
, (5.8)

with residues {Aj } and pole positions {qj } satisfying the sum rules

∑
j

Aj

qj

= −1,
∑

j

Aj = Π0, (5.9)

with the abbreviation

Π0 =
P

2π2b3

P ′
1

p10 − ρφ1

. (5.10)

We have omitted the dependence on (R, z) for brevity. The time-dependent pressure
at a chosen point (R, z) is given by

p(R, z, t) = ps + ρφ(R, z)δ(t) +
P

2π2b2

√
ν

πb2t
P ′

1(R, z)

+
(
p10(R, z) − ρφ1(R, z)

) ∑
j

Aj (R, z)qj (R, z)w(−iqj (R, z)
√

νt), (5.11)

where w(ζ ) = exp(−ζ 2)erfc(−iζ ) is the w function (Abramowitz & Stegun 1965).
We have shown for a point source near a plane wall (Felderhof 2009) that in that

case the flow velocity at any point decays at least as fast as t−5/2 at long times.
Numerical calculation shows the same behaviour for the pressure in the present
situation. As a consequence there can be no term of order α in the expansion of the
function Gp(R, z, α) in powers of α. We take this into account in the construction of
the Padé approximant to the function Gp(R, z, α). The absence of the term corresponds
to the sum rule ∑

j

Aj

q2
j

= 0. (5.12)

Taking account also of the sum rules in (5.9) we write the function Gp(α) in the form

Gp(α) = 1

/(
1 +

α2

Π0α + ψ(α)

)
, (5.13)

where ψ(α) tends to a constant as α → ∞. In the Padé approximant the function
ψ(α) is approximated by a ratio of two polynomials PA(α)/PB(α). In order to find
numerical values for the coefficients of the polynomials we need to calculate the
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Figure 4. Plot of the pressure perturbation δp(R, z, t), as given by the sum of the last two
terms in (5.11), as a function of t/τb , with τb = b2/ν, at (R, z) = (0.6b, 0.5b) (solid curve), and
at (R, z) = (0.6b, 2b) (dashed curve).

value of Gp(α) at selected values of α. This requires numerical integration over
wavenumber only, and is a fast procedure. In figure 4 we show the behaviour of
the pressure δp(r, t) as a function of time for the two points (R, z) = (0.6, 0.5)b
and(R, z) = (0.6, 2)b. From the remarks following (3.13) and (4.8) it follows that the
term ρφ1(R, z)δ(t) contributes half the time integral of p1(R, z, t) at large |z|. The
time integral of δp(R, z, t) contributes the other half.

6. Flow velocity
The flow velocity at time t at a point (R, z) in the tube follows by inverse Fourier

transform of the expressions in (2.22) and (2.23). The steady-state flow pattern is
identical with the integral over all time of the evolving flow pattern, as evaluated here
from the initial-value problem.

The time-dependent flow velocity is written as

v(r, t) = v0(r, t) + v1(r, t), (6.1)

where the free-space part v0(r, t) follows from the stream function given by (2.9). The
cylindrical components are expressed as

vR(R, z, t) = vR(R, z, 0+)γR(R, z, t),
vz(R, z, t) = vz(R, z, 0+)γz(R, z, t),

}
(6.2)

with prefactors which follow from (4.10) and (4.11), and with

γR(R, z, 0+) = 1, γz(R, z, 0+) = 1. (6.3)

The Fourier transform given by (2.22) and (2.23) is expressed as

vRω(R, z) = vR0(R, z)GR(R, z, ω),
vzω(R, z) = vz0(R, z)Gz(R, z, ω),

}
(6.4)

with prefactors given by (3.1) and (3.12). At high frequency the Fourier transforms
behave as

GR(R, z, ω) ≈ −λR(R, z)

iω
, Gz(R, z, ω) ≈ −λz(R, z)

iω
, (6.5)
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with numerators given by

λR(R, z) =
vR(R, z, 0+)

vR0(R, z)
, λz(R, z) =

vz(R, z, 0+)

vz0(R, z)
. (6.6)

The numerical evaluation of the time-dependent velocity v(r, t) requires integration
over frequency and wavenumber. Again we use the method of Padé approximants as
a more rapid procedure. Thus, in analogy to (5.8) the transforms are expressed as

GR(R, z, α) =
∑

j

ARj (R, z)

α − qRj (R, z)
, Gz(R, z, α) =

∑
j

Azj (R, z)

α − qzj (R, z)
, (6.7)

with residues {Aj } and pole positions {qj } satisfying the sum rules

∑
j

ARj

qRj
= −1,

∑
j ARj = 0,

∑
j ARjqRj = λR/ν,∑

j

Azj

qzj
= −1,

∑
j Azj = 0,

∑
j Azjqzj = λz/ν.

⎫⎬
⎭ (6.8)

We shall use in addition a sum rule based on the absence of the term linear in α in
the expansion in powers of α. If we expand the expressions in (2.22) in powers of α,
we obtain

v0Rω(r) =
P

4πη

[
Rz

2r3
+ O(α2)

]
,

v0zω(r) =
P

4πη

[
R2 + 2z2

2r3
− 2

3
α + O(α2)

]
.

⎫⎪⎪⎬
⎪⎪⎭

(6.9)

We have shown for a plane wall that the term linear in α is cancelled precisely in the
total flow, corresponding to the absence of a t−3/2 long-time tail (Felderhof 2009). We
must expect that a cylindrical wall has the same effect. The absence of the linear term
is confirmed by an asymptotic analysis of the behaviour of the integrals in (2.23) for
small k and ω. The absence of a linear term in α in the expansion of the total flow
velocity vω(r) implies the sum rules

∑
j

ARj

q2
Rj

= 0,
∑

j

Azj

q2
zj

= 0. (6.10)

In addition we wish to take exact account of the short-time behaviour. The pressure
surge proportional to 1/

√
t , found in the preceding section, corresponds to a

√
t

variation of the flow velocity at short time. We therefore write the function GR(R, z, α)
in the form

GR(R, z, α) =
1

1 + να2/λR − μRα2/
(
λ2

Rα + ψR(α)
) , (6.11)

with a function ψR(α) which tends to a constant as α → ∞. At small α the function
GR behaves as

GR(R, z, α) = 1 +

(
μR

ψR(0)
− ν

λR

)
α2 + O(α3), as α → 0, (6.12)

and at large α the function behaves as

GR(R, z, α) =
λR

να2
+

μR

ν2α3
+ O(α−4), as α → ∞. (6.13)
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Figure 5. Plot of the flow velocity components vR(0.6b, 0.5b, t) (dashed curve) and
vz(0.6b, 0.5b, t) (solid curve) as functions of t/τb .

Similarly the function Gz(R, z, α) is written in the form

Gz(R, z, α) =
1

1 + να2/λz − μzα2/
(
λ2

zα + ψz(α)
) , (6.14)

with a function ψz(α) which tends to a constant as α → ∞. The behaviour at large α

of the functions GR and Gz corresponds to the sum rules∑
j

ARjq
2
Rj =

μR

ν2
,

∑
j

Azjq
2
zj =

μz

ν2
. (6.15)

The coefficients μR(R, z) and μz(R, z) are found from (2.23) and (4.15). This yields

μR(R, z) =
−ν2P

2π2ηvR0(R, z)b

∫ ∞

0

I1(kR)

I1(kb)2
k2 sin kz dk,

μz(R, z) =
−ν2P

2π2ηvz0(R, z)b

∫ ∞

0

I0(kR)

I1(kb)2
k2 cos kz dk.

⎫⎪⎪⎬
⎪⎪⎭

(6.16)

Each of the functions ψR(α) and ψz(α) is approximated as a ratio of two polynomials
in α. It follows from (6.7) that the time-dependent velocity v(r, t) has components

vR(R, z, t) = vR0(R, z)ν
∑

j

ARj (R, z)qRj (R, z)w(−iqRj (R, z)
√

νt),

vz(R, z, t) = vz0(R, z)ν
∑

j

Azj (R, z)qzj (R, z)w(−iqzj (R, z)
√

νt).

⎫⎪⎪⎬
⎪⎪⎭

(6.17)

In figures 5 and 6 we show the velocity components vR and vz for the two points
(R, z) = (0.5, 0.5)b and (R, z) = (0.5, 2)b as functions of time.

One gets an impression of the flow pattern by plotting the velocity components at
a chosen time as functions of R for fixed z. In figures 7 and 8 we plot vR and vz at the
cross-section z = 0.5b at times 0.02τb and 0.07τb, and compare with the initial values
vR(R, z, 0+) and vz(R, z, 0+), as well as with vR0/τb and vz0/τb. The latter quantities
correspond to the time integral of the flow. Note that the initial value vz(R, z, 0+),
corresponding to potential flow, does not satisfy the no-slip boundary condition. In
figures 9 and 10 we plot the same quantities for the cross-section z = 2.3. The centre
of the first vortex for the steady-state flow is at R = 0.64b, z = 2.20b. In connection
with the conservation law (2.2) it is convenient to plot the product Rvz. The integral of
Rvz must vanish when integrated between R = 0 and R = b, and this can be checked
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Figure 6. Plot of the flow velocity components 1000vR(0.6b, 2.3b, t) (dashed curve) and
3000vz(0.6b, 2.3b, t) (solid curve) as functions of t/τb .
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Figure 7. Plot of the flow velocity component vR(R, 0.5b, t) at cross-section z = 0.5b as
a function of R at the initial time t =0+ (dash-dotted curve), and at times t = 0.02τb

(solid curve), and t = 0.07τb (long dashes). We compare with the time-integrated component
10vR0(R, 0.5b)/τb , given by (3.2) and (3.12) (short dashes).

for the numerical solution. For reasons of space we do not show the corresponding
plots.

7. Velocity relaxation and Brownian motion
In conclusion we consider the velocity autocorrelation function of a Brownian

particle of radius a and mass mp , initially located at the origin. We consider only the
z component of the motion. The velocity autocorrelation function may be evaluated
as the Fourier transform of the zz component of the frequency-dependent admittance
tensor (Felderhof 2005). The latter gives the mean velocity response of the particle to
an applied harmonic force. The admittance tensor differs from that for infinite space
due to the no-slip boundary condition at the wall. For a � b the difference may be
expressed in terms of a reaction field tensor. Here we need the zz component defined
by

Fzz(r0, ω) = lim
r→r 0

(Gzzω(r, r0) − Gzz0ω(r − r0)), (7.1)
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Figure 8. Plot of the flow velocity component vz(R, 0.5b, t) at cross-section z = 0.5b as
a function of R at the initial time t = 0+ (dash-dotted curve), and at times t = 0.02τb

(solid curve), and t = 0.07τb (long dashes). We compare with the time-integrated component
10vz0(R, 0.5b)/τb , given by (3.2) and (3.12) (short dashes).
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Figure 9. Plot of the flow velocity component 103vR(R, 2.3b, t) at cross-section z = 2.3b
as a function of R at the initial time t = 0+ (dash-dotted curve), and at times t = 0.02τb

(solid curve), and t = 0.07τb (long dashes). We compare with the time-integrated component
104vR0(R, 2.3b)/τb , given by (3.2) and (3.12) (short dashes).

where Gzzω(r, r0) is the element of the Green function tensor for the tube and
Gzz0ω(r, r0) is the element for infinite space. In the present situation

Fzz(0, ω) = v1zω(0)/P. (7.2)

The relevant element of the admittance tensor is

Yzz(0, ω) = Y0(ω)

[
1 + 6πηa

(
1 + αa +

1

3
α2a2

)
Fzz(0, ω)

]
, (7.3)

where Y0(ω) is the scalar admittance for infinite space

Y0(ω) =

[
− iωmp + 6πηa

(
1 + αa +

1

9
α2a2

)]−1

. (7.4)

In the theory of Brownian motion the velocity autocorrelation function of the particle
is defined by

Czz(t) = 〈Uz(t)Uz(0)〉, (7.5)
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Figure 10. Plot of the flow velocity component 103vz(R, 2.3b, t) at cross-section z = 2.3b
as a function of R at the initial time t = 0+ (dash-dotted curve), and at times t = 0.02τb

(solid curve) and t = 0.07τb (long dashes). We compare with the time-integrated component
104vz0(R, 2.3b)/τb , given by (3.2) and (3.12) (short dashes).

where the angle brackets denote the equilibrium ensemble average. According to the
fluctuation–dissipation theorem its Fourier transform is given by

Ĉzz(ω) =

∫ ∞

0

eiωtCzz(t) dt = kBT Yzz(0, ω). (7.6)

The zero frequency admittance is the particle mobility. This takes the form

μzz(0) =
1

6πηa

(
1 − k0

a

b

)
, (7.7)

with coefficient

k0 = −6πηbFzz(0, 0). (7.8)

From (3.12) we find

k0 = − 3

π
b2

∫ ∞

0

A1(k)k dk = 2.10444. (7.9)

The numerical value agrees with that found by Faxén (1959), and has been confirmed
in computer simulation (Pagonabarraga et al. 1999). The value is to be compared
with Lorentz’s value 9/16 = 0.5625 for motion parallel to a plane wall at distance b.

The behaviour of the admittance at high frequency determines the added mass ma

of the particle according to

Yzz(0, ω) ≈ 1

−iω(mp + ma)
, as ω → ∞. (7.10)

For infinite space the added mass takes the value ma = 1/2mf , where mf = 4πa3ρ/3
is the mass of displaced fluid, as follows from (7.4). For the present situation the
reaction factor Fzz(0, ω) behaves for large positive α as

Fzz(0, ω) ≈ − k∞

2πηb3α2
, as α → ∞, (7.11)

with coefficient, from (4.11),

k∞ =
1

π
b3

∫ ∞

0

K1(kb)

I1(kb)
k2 dk = 0.79682. (7.12)
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Figure 11. Plot of ψz(t)/ψz(0) as a function of τ = t/τb .

The factor k∞/2 = 0.39841 is to be compared with the factor 1/32 = 0.03125 for
motion parallel to a plane wall (there is an erroneous factor 3 in (4.4) of Felderhof
2005). The added mass becomes

ma =
mp + 1

2
mf

1 − k∞a3/b3
− mp. (7.13)

The added mass in the tube is larger than that for the same particle in infinite fluid.
The reaction factor Fzz(0, ω) may be regarded as the Fourier transform of a function

ψz(t) according to

Fzz(0, ω) =
1

6πρ

∫ ∞

0

eiωtψz(t) dt. (7.14)

The high-frequency behaviour given by (7.11) corresponds to the initial value

ψz(0) = −3k∞

b3
. (7.15)

It follows from (6.9) that the function ψz(t) decays with a t−3/2 long-time tail as

ψz(t) ≈ − 1

2
√

π
τ−3/2, as t → ∞, (7.16)

where τ = t/τb with τb = b2/ν. In figure 11 we plot the ratio ψz(t)/ψz(0) as a function
of τ .

If the ratio a/b is sufficiently large, the reaction factor has a strong effect on
the velocity correlation function of the Brownian particle. In figure 12 we plot the
normalized velocity autocorrelation function Czz(t)/Cz(0), calculated from (7.6), as
a function of τ for a neutrally buoyant particle of radius a = 5b/9, a case studied
in computer simulation by Hagen et al. (1997) and Pagonabarraga et al. (1999). In
figure 13 we plot the corresponding function log10[|Czz(t)/Czz(0)|] as a function of
log10(τ ). The correlation function passes through zero and decays with a t−5/2 long-
time tail of negative amplitude. The negative sign is in contrast to what one would
expect from the behaviour near a plane wall (Felderhof 2005). Apparently in the
final stage the adverse pressure gradient causes a backward motion. The minimum of
the correlation function is much deeper than in the simulation. In the simulation the
correlation function decays with a negative t−3/2 long-time tail due to the effect of
fluid compressibility, as explained qualitatively by Pagonabarraga et al. (1999). The
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Figure 12. Plot of Czz(t)/Czz(0) as a function of t/τb for a Brownian particle
of radius a = 5b/9.
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Figure 13. Plot of log10 |Czz(t)/Czz(0)| as a function of log10(t/τb) for a Brownian particle of
radius a = 5b/9. The dashed straight line indicates the behaviour corresponding to a t−5/2

long-time tail.

long-time decay is slower than the exponential behaviour suggested by a mode-
coupling argument (Bocquet & Barrat 1996), and moreover has the opposite sign.

8. Discussion
We have calculated the flow of a viscous incompressible fluid generated by a sudden

impulse at the centre of a circular tube and in the direction of the tube axis, with
no-slip boundary condition at the wall. The confinement by the wall has a drastic
effect on the flow. The calculation provides insight into the buildup of eddies in
the flow pattern generated by the steady-state motion of a small sphere along the
axis. The steady-state flow pattern corresponds to the integral over all time of the
time-dependent flow studied here.

One striking result is the negative t−5/2 long-time tail in the flow velocity at
the source point, shown in figures 12 and 13, where the particle is assumed to be
neutrally buoyant. In principle the long-time tail can be observed in the velocity
autocorrelation function of a Brownian particle (Jeney et al. 2008). It is known from
computer simulation (Hagen et al. 1997) that for a compressible fluid the correlation
function decays with a negative t−3/2 long-time tail, and this has been explained
qualitatively by Pagonabarraga et al. (1999). Elsewhere we have discussed the long-
time tail for a compressible fluid confined between two planar walls (Felderhof 2006).
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It would be of interest to extend the present calculation to a compressible fluid, and
investigate the numerical consequences for a realistic fluid like water.
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